
0203

43174 Business Park Drive, Suite 103 Temecula, CA 92590

p| 951.506.1488 **f**| 951.506.1491

kleinfelder.com

November 13, 2008 Kleinfelder Project No. 98427

Ms. Thizar Tintut-Williams
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

Geotracker Report Upload Confirmation Number: 6387115955 for Mobil Jalk Fee Property

Subject: Former Jalk Fee Property

10607 Norwalk Boulevard Santa Fe Springs, California SLIC No. 203

Dear Ms. Tintut-Williams:

Enclosed is the 2008 Annual Groundwater Monitoring Report for the subject location prepared for ExxonMobil Environmental Services Company on behalf of ExxonMobil Production Company (ExxonMobil) by Kleinfelder West, Inc. The contents of this report include:

Summary Sheet

Exhibit 1 --- Monitoring Well Sampling Schedule

Exhibit 2 --- Groundwater Elevations and Chemical Analysis Table---Current vs. Prior Event

Exhibit 3 --- Groundwater Elevations and Chemical Analysis Table---Historical

Exhibit 4 --- Oxygenates Analysis
Exhibit 5 --- Additional Analytes

Exhibit 6 --- Plates

Exhibit 7 --- Graphs Showing Groundwater Elevations and Benzene Concentrations vs.

Sample Date

Exhibit 8 --- Well Purging and Groundwater Sampling Protocol

Exhibit 9 --- Limitations

Exhibit 10 --- Monitoring Well Sampling Forms
Exhibit 11 --- Analytical Laboratory Data Sheets

Based on the historical and 2008 annual groundwater sampling results, on behalf of ExxonMobil, Kleinfelder respectfully requests groundwater closure for the site. Data demonstrates hydrocarbon-affected soil and groundwater relating to former Mobil Oil field operations have been remediated.

Should you have any questions, please contact Mr. Jeffrey Hensel, Kleinfelder, at (951) 506-1488.

Respectfully submitted,

KLEINFELDER, WEST, INC.

Jeffrey Hensel, PG, REAII

Project Manager

cc: Mr. Greg Chila, The O'Donnell Group (electronic)

Mr. Thomas Clark, Clark Holdings, LLC (electronic)

Mr. Frank Serrapere, ExxonMobil Environmental Services Company

98427/TEME8R245

November 13, 2008

		N 2 W			5.5	084 53 1 VE
To:	Ms. Thizar Tintut-Williams			Date: Nover		08⊏ 🚆
	California Regional Water Qu	uality Control		Reference N	lo:TEME8R	R245
	Los Angeles Region	_		Copies to: 1		
	320 West 4 th Street, Suite 20	00	I	Project No.	98427	· •
	Los Angeles, CA 90013				11 12 12	23
Subje	ect: Groundwater Mo	onitoring Rep	ort		724	
We a	re sending the following:	\boxtimes	Attache	d 🗆	Under se	eparate cover
Alliu	al 2008 Groundwater Monitorin	ig Report for	r ormer of	ain ree rre		
Via:	Messenger/Courier	Remarks:	-	ave question	•	
	First Class Mail FedEx United Parcel DHL Lone Star Overnight Freight Other – <u>Geotracker</u>			mental Serv		
	smitted: As Requested For Approval For Your Use For Review & Comment					

By: Shirley Griffin

2008 Annual

Summary Sheet

Groundwater Monitoring Report

Former Jalk Fee Property 10607 Norwalk Boulevard Santa Fe Springs, California Case: SLIC #203

umber of water zones:	1			
ELD ACTIVITY:		,	Date sampled:	10/24/08
Number of groundwater wells on-site:	2		Groundwater wells monitored:	2
Number of groundwater wells off-site:	0		Groundwater wells sampled:	2
			Groundwater wells with measurable LPI	⊣ : 0
			Site Status:	Monitoring
TE HYDROGEOLOGY:				
Average depth to groundwater below ground	surface:			84.66 feet
Average depth to groundwater below ground Average elevation of potentiometric surface		level:		
Average elevation of potentiometric surface	above mean sea		ı:	47.73 feet
	above mean sea since last samplir			
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien	above mean sea since last samplir t (historical);	g episode	South-so	47.73 feet (4.33) feet
Average elevation of potentiometric surface Average change in groundwater elevations s	above mean sea since last samplir t (historical);	g episode	South-so	47.73 feet (4.33) feet
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien	above mean sea since last samplir t (historical);	g episode	South-so	47.73 feet (4.33) feet
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien ROUNDWATER HYDROCARBON CONCENTR	above mean sea since last samplir t (historical): ATION (BENZE)	g episode	South-so	47.73 feet (4.33) feet outhwest, 0.003 ft/ft
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien ROUNDWATER HYDROCARBON CONCENTR Wells containing measurable LPH:	above mean sea since last samplir it (historical): ATION (BENZEI MCL:	g episode NE MCL = 0	1.0 ppb): Range in thickness of LPH:	47.73 feet (4.33) feet outhwest, 0.003 ft/ft 0.00 foot
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien ROUNDWATER HYDROCARBON CONCENTR Wells containing measurable LPH: Number of wells with concentrations below N	above mean sea since last samplir it (historical): ATION (BENZEI MCL: ove MCL:	g episode NE MCL = 0 *2	1.0 ppb): Range in thickness of LPH: Volume of LPH recovered this period:	47.73 feet (4.33) feet outhwest, 0.003 ft/ft 0.00 foot 0.00 gallo
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien ROUNDWATER HYDROCARBON CONCENTR Wells containing measurable LPH: Number of wells with concentrations below N Number of wells with concentrations at or ab	above mean sea since last samplir it (historical): ATION (BENZE) MCL: ove MCL: han MCL:	0 *2 0	Ange in thickness of LPH: Volume of LPH recovered this period: Volume of LPH recovered to date: Range in concentrations:	47.73 feet (4.33) feet outhwest, 0.003 ft/ft 0.00 foot 0.00 gallo 0.00 gallo
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien ROUNDWATER HYDROCARBON CONCENTR Wells containing measurable LPH: Number of wells with concentrations below N Number of wells with concentrations at or ab Number of wells with reporting limit greater the	above mean seasince last sampling (historical): ATION (BENZE) MCL: ove MCL: han MCL: ATION (METHY)	0 *2 0	Ange in thickness of LPH: Volume of LPH recovered this period: Volume of LPH recovered to date: Range in concentrations:	47.73 feet (4.33) feet outhwest, 0.003 ft/ft 0.00 foot 0.00 gallo 0.00 gallo
Average elevation of potentiometric surface Average change in groundwater elevations s Average flow direction and hydraulic gradien ROUNDWATER HYDROCARBON CONCENTR Wells containing measurable LPH: Number of wells with concentrations below N Number of wells with concentrations at or ab Number of wells with reporting limit greater the ROUNDWATER HYDROCARBON CONCENTR	above mean seasince last sampling (historical): ATION (BENZE) MCL: love MCL: han MCL: ATION (METHY) MCL:	NE MCL = 0 *2 0 0 tert-BU	Ange in thickness of LPH: Volume of LPH recovered this period: Volume of LPH recovered to date: Range in concentrations:	47.73 feet (4.33) feet outhwest, 0.003 ft/ft 0.00 foot 0.00 gallo 0.00 gallo

ExxonMobil remediated crude oil affected soil and received soil closure in 2001.

Chlorinated hydrocarbons detected not related to former Mobil oil field operations. Suspected sources include regional plume and/or property to the south. Chlorinated hydrocarbon results consistent with historical data.

Based on the historical and 2008 annual groundwater sampling results, on behalf of ExxonMobil, Kleinfelder respectfully requests groundwater closure for the site.

Data demonstrates hydrocarbon-affected soil and groundwater relating to former Mobil oil field operations have been remediated. During the 2008 sampling event, concentrations of 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene were detected

at 0.61 J µg/L and 0.53 J, respectively, in the associated method blank. LPH = Liquid-phase hydrocarbons

MCL = Maximum contaminant level

ft/ft = Foot vertical per foot horizontal

ppb = Parts per billion

Parenthesis indicate a negative value.

*Laboratory reporting limit exceeded MCL for Monitoring Well MMW-5 sample.

This work has been performed under the supervision of the undersigned California Professional Geologist.

Prepared by:

Jeffrey Hensel, California PG 5759

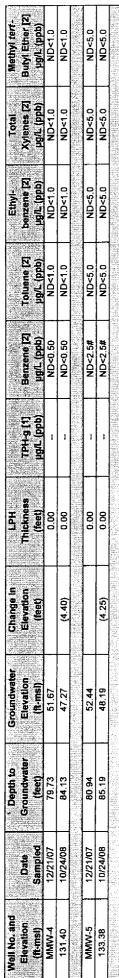
Kleinfelder Project:

Approved by:

Submittal Date:

Monitoring Well Sampling Schedule

Monitoring Well Sampling Schedule Former Jalk Fee Property


Well First	Third Fourth Quarter	Geotracker Field Point Name	Global ID
MMW-04	Χ	MMW-4	SL184801463
MMW-05	X	MMW-5	SL184801463

Groundwater Elevations and Chemical Analysis Table---Current vs. Prior Event

Groundwater Elevations and Chemical Analysis Table---Current vs. Prior Event Former Jalk Fee Property

KLEINFELDER Bight People, Right Solutions.

я	
1	
a	• •
ş	w
3	a.
1	-
3	75
3	_

- [1] SW-846 Method 8015B[2] EPA Method 8260BND = Not detected
- -- = Not analyzed
- LPH = Liquid-phase hydrocarbons µg/L = Micrograms per liter
- ppb = Parts per billion # = Laboratory reporting limit exceeded MCL

TPH-g = Total petroleum hydrocarbons as gasoline

ft-msl = Feet above mean sea level

Groundwater Elevations and Chemical Analysis Table---Historical

Groundwater Elevations and Chemical Analysis Table---Historical Former Jalk Fee Property

Well No. and Elevation (filmsi)	Dete Sampled	Depth to Groundwater (feet)	Groundwater Elevation (ft-msl)	Change in Elevation (feet)	LPH Thičkness (feet)	TPH-g [1] µg/L (ppb)	Benzene [2] µg/L (ppb)	Toluene [2] pg/L (ppb)	Ethyl- benzene [2] µg/L (ppb)	Total Xylenes [2] µg/L (ppb)	Methyl tert - Butyl Ether (2) pg/L (ppb)
MMW-3	06/06/00	70.69	63.57	N/A	0.00	ND<500	ND<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
134.26	08/31/00	70.67	63.59	0.02	0.00	ND<500	ND<0.50	ND<1.0	ND<1.0	ND<2.0	1.9
	11/28/00	71.49	62.77	(0.82)	0.00	-	ND<0.50	ND<1.0	ND<1.0	ND<2.0	7.0
	03/05/01	71.30	62.96	0.19	0.00	-	ND<0.50	ND<1.0	ND<1.0	ND<2.0	7.6
	06/12/01	70.07	64.19	1.23	0.00		3.7	5.7	1.4	5.3	13
	Well Abandone	rd			·						
			114.6 % 211.012		40				, siden Barratolo burkeli.	the state of the s	<u> Pri 8:50, 90 (8:08)</u>
MMW-4	06/06/00	70.46	60.94	NA	0.00	ND<500	ND<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
131,40	08/31/00	70.58	60.82	(0.12)	0.00	ND<500	ND<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
	11/28/00	71.28	60.12	(0.70)	0.00		NO<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
	03/05/01	71.02	60.38	0.26	0.00		ND<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
	06/12/01	69.81	61.59	1.21	0.00	_	13	12	2,1	7.9	1.2
	12/23/03	78.38	53.02	(8.57)	0.00	_	ND<0.50	ND<1.0	ND<1.9	ND<2.0	ND<1.0
	12/21/04	84.73	46.67	(6.35)	0.00	-	ND<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
	12/02/05	79.01	52.39	5.72	0.00		ND<0.50	ND<1.0	ND<1.0	ND<2.0	ND<1.0
	12/19/06	76.66	54.74	2.35	0.00	-	ND<0.50	0.54 J,B	ND<1.0	ND<1.0	ND<1.0
	12/21/07	79.73	51.67	(3.07)	0.00	-	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	10/24/08	84.13	47.27	(4.40)	0.00	-	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
								10,512,112456		RESERVED BY STATE OF THE STATE	
MMW-5	06/06/00	71.79	61,59	NA	0.00	ND<500	ND<2.5	ND<5.0	ND<5.0	ND<10	ND<5.0
133.3B	09/15/00	71.86	61.52	(0.07)	0.00	136	ND<2.5	ND<5.0	ND<5	ND<10	ND<5
	11/28/00	72.58	60,80	(0.72)	0.00		ND<2.5	ND<5.0	ND<5	NO<10	ND<5
	03/05/01	72.47	60,91	0.11	0.00	-	ND<2.5	ND<5.0	ND<5.0	ND<10	ND<5.0
	06/12/01	71.29	62,09	1.18	0.00	_	1.3	2.3	ND<2.0	ND<4.0	ND<2.0
	12/23/03	79.72	53.66	(8.43)	0.00	-	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	12/21/04	86.02	47.36	{6.30}	0.00	T -	ND<5.0	ND<10	ND<10	ND<10	ND<10
	12/02/05	80.69	52.69	5.33	0.00		ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
•	12/19/06	78.29	55.09	2.40	0.00	-	ND<0.50	0.64 J,B	ND<1.0	ND<1.0	ND<1.0
	12/21/07	80.94	52.44	(2.65)	0,00	_	ND<2.5#	ND<5.0	ND<5.0	ND<5.0	ND<5.0
	10/24/08	85.19	48.19	(4.25)	0.00		ND<2.5#	ND<5.0	ND<5.0	ND<5.0	ND<5.0

Notes:

[1] EPA Method 8015M (California DHS LUFT Method) or SW-846 Method 8015B

[2] EPA Method 8260B

Parentheses indicate a negative value.

LPH = Liquid-phase hydrocarbons

B = Analyte was present in the associated method blank

NA = Not applicable

ND = Not detected

-- = Not analyzed

bgs = Below ground surface
J = Estimated value

TPH-g = Total petroleum hydrocarbons as gasoline

ft-msl = Feet above mean sea level

ppb = Parts per billion

μg/L = Micrograms per liter

= Laboratory reporting limit exceeded MCL

Oxygenates Analysis

Oxygenates Analysis Former Jalk Fee Property

		Methyl tert-	Diisopropyl	Ethyl tert -	tert-Amyl	tert-Butyl		
Well	Date	Butyl Ether	Ether	Butyl Ether	Methyl Ether	Alcohol	Ethanol	Methanol
Number	Sampled	. µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)
	06/06/00	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<50	ND<100	ND<100
	08/31/00	1.9	ND<2.0	ND<2.0	ND<2.0	ND<50	ND<100	ND<100
MMW-3	11/28/00	7.0	ND<2.0	ND<2.0	ND<2.0	ND<50	ND<100	ND<100
INIINIAA-2	03/05/01	7.6	ND<2.0	ND<2.0	ND<2.0	ND<50		
	06/12/01	13	ND<2.0	ND<2.0	ND<2.0	ND<50	_	
		Well Abandon	ed					
(4.)	Angles and Alexandrae	ar territoria de la composición del composición de la composición de la composición del composición de la composición del composición de la composición del composición del composición del composición del composición del composición dela composición del composición del composición del composición del		1,12,146.45.15.25.2		andriess, i.e. modern	100	e autops je causky ja ac
	06/06/00	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<50	ND<100	ND<100
	08/31/00	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<50	ND<100	ND<100
	11/28/00	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<50	ND<100	ND<100
	03/05/01	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<50	_	_
1	06/12/01	1.2	ND<2.0	ND<2.0	ND<2.0	ND<50		
MMW-4	12/23/03	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	_
	12/21/04	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
	12/02/05	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
	12/19/06	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
	12/21/07	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
	10/24/08	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
Carl maker segments	Citie - Artesia	Managara da de la composição de la compo	and the second second			Company (September)	San Araban San Series	
	06/06/00	ND<5.0	ND<10	ND<10	ND<10	ND<250	ND<100	ND<100
	09/15/00	ND<5.0	ND<10	ND<10	ND<10	ND<250	ND<100	320
	11/28/00	ND<5.0	ND<10	ND<10	ND<10	ND<250	ND<100	ND<100
Ì	03/05/01	ND<5.0	ND<10	ND<10	ND<10	ND<250	-	-
	06/12/01	ND<2.0	ND<4.0	ND<4.0	ND<4.0	ND<100	_	_
MMW-5	12/23/03	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
	12/21/04	ND<1.0	ND<20	ND<20	ND<20	ND<100	ND<1,000	_
	12/02/05	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	
ļ	12/19/06	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<100	-
	12/21/07	ND<5.0	ND<10	ND<10	ND<10	ND<50	ND<500	
ļ	10/24/08	ND<5.0	ND<10	ND<10	ND<10	ND<50	ND<500	-
	A Capacita State Comment	Page 100				in marketing to the	and the second	

Notes:

Results analyzed by EPA Method 8260B. Bolded results analyzed by EPA Method 8015B. µg/L = Micrograms per liter

-- = Not analyzedND = Not detectedppb = Parts per billion

Additional Analytes

Additional Detected Analytes Former Jalk Fee Property

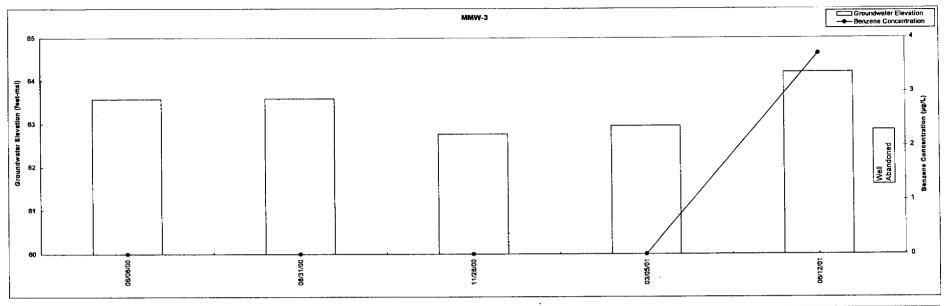
MANW-3 0903160	1.15. 1.2. ** Dichloroeffune Dichloroeffund Ind. (pp. 1.10.)	hane Dichlorethene I fail mail (mail	hane Dichloroethene Dichloroethene Dichloropropa b) und. (mbs) und. (pbb) und. (pbb)	-	PCE TCE		Chlorobenzane Trichforcethane ugft. (sob)	methane wall (ppb)	Triffuorpethane	benzene ugf. (ppb)
MAN-4 D3-05-01 S,7 J NDC-1.0 ND D.65 J	- 1.7	6.5	_	L	H	,	1		1	,
Well Abandoned ND<10 ND<10 NO<10 ND<10 NO<10 NO<10 ND<10 NO<10 NO<		7.5	ND<1.0	ND<1.0		g	ND<1.0	ND<10	-	ND<1.0
Well Abandoned Well	6,1	6.6		_	9.5 22	9	ND<1.0	ND<10	ı	ND<1.0
NAM-4 1272/07 ND<-10 N										
MW-5 MD-510 MD-										
MAY	1.9	2.0	1		6.7 17	QV	ND<1.0	ı	1	1
MN-4 1272303 ND<-10 ND		5.4	ND<1.0 NC	ND<1.0	26 27	Ş	NO<1.0	ND<10		ND<1.0
1222033 ND<10 ND ND<10	2.6	1.4		ND<1.0		Q	ND<1.0	ND<10	1	1.2
MW-4 12/21/04 ND<-10 0.23 J ND 0.63 J 12/20205 11 J ND<-10 ND 0.63 J 12/20206 11 J ND<-10 ND 0.63 J 12/21/07 ND<-50 ND<-10 ND 0.63 J 10/24/08 ND<-50 ND<-10 ND 0.63 J 10/24/08 ND<-50 ND<-10 ND 0.63 J 10/24/08 ND<-50 ND<-50 ND 0.63 J 10/24/08 ND<-50 ND<-50 ND 0.63 J 12/21/07 ND<-20 ND<-20 ND 0.61 J 12/21/07 ND<-50 1.6 ND 1.50 12/24/08 ND<-20 ND 1.50 12/24/08 ND 1.50	2.3	8.8		ND<1.0	16 21	QN	ND<1.0	ND<10	1	ND<1.0
1202055 ND<10 ND<10 ND<10 ND 1207205 ND<10 ND<10 ND 1207205 ND<10 ND 1207207 ND<20 ND 1207207 ND>20 N	2.4	7		1.6	14 22	Q	ND<1.0	ND<10	ND<10	ND<1.0
12/19/06		15		ND<1.0	15 17	2	ND<1.0	ND<10	ND<10	ND<1.0
1221/07 ND-550 ND-1,0 ND 1.8	6,	12	0.1×QN	1.	9.1	9	ND<1.0	ND<10	ND<10	ND<1.0
1024/08	3.2	3		3.0	7	ş	ND<1.0	ND<50	ND<10	ND<1.0
O9/15/00	6.4	\$	ND<1.0		26 27	0.36 J.B	NO<1.0	0.62 J	2.0.3	ND<1.0
0941500										
CGAOSACT GCZ NDC-5.0 ND 4.1.J	ND<1.0	ND<1.0		呈	ND<1.0 ND<1.1	_	1	1.		1
MW-5 MD-20 MD-20 ND 37		150	ND<5.0	ND<5.0	650 63	2	ND<5.0	ND<50	1	ND<5.0
MW-5 1222102 ND-10 1.6 ND 61 1.0 1.0 ND 61 1.0	3.2	42			350 44	2	ND<2.0	ND<20	-	ND<2.0
MW-5 1221/04 ND<-100 3.0 J ND 150 150 150 150 150 150 150 150 150 150	14 4.8	<u>\$</u>		2.5	660 140	2	5.2	ND<10	1	ND<1.0
12/02/05 NU3-(10 1.4 NU 120 12	5	370	ND<10	ND<10	510 190	GN	ND<10	10.1	14.J	ND<10
12719/06 ND-550 1.4 ND 120 1222107 ND-25G ND-5.0 ND 110 1024/06 ND-25G ND-5.0 ND 110 1024/06 ND-25G ND-5.0 96 Results obtained using EPA Method 8260B.	33	022	ND<1.0	ND<1.0	330 110	S	4.3	5,3.5	12	ND<1.0
1221/07 ND-250 ND-5.9 ND 110 14024/06 ND-250 1.8.3 1.2.3 96 18 Seutls obtained using EPA Method 8260B.	-	240	1.1	1.8	160 100	ON	3.6	7.1 3	ND<10	ND<1.0
102A06	38	95	ND<5.0	ND<5.0	640 110	Q	ND<5.0	NO<50	ND<50	ND<5.0
Results obtained using EPA Method 8280B. Up/L = Micrograms per liter		55	3.1.5	ND<5.0	510 100	3.0 J.B	ND<5.0	6.8 J	15 J	ND<5.0
Resufs obtained using EPA Method 8260B. µpt. = Micrograms per liter										
Method 8260B.										
	ND = Not detected		PCE.	PCE = Tetrachloroethane						
	J = Estimated value = Not analyzed		TCE = B = An	TCE = Trichloroethene B = Analyte was present ir	TCE = Trictiloroethene B = Analyte was present in the associated method blank	d blank				
	•									

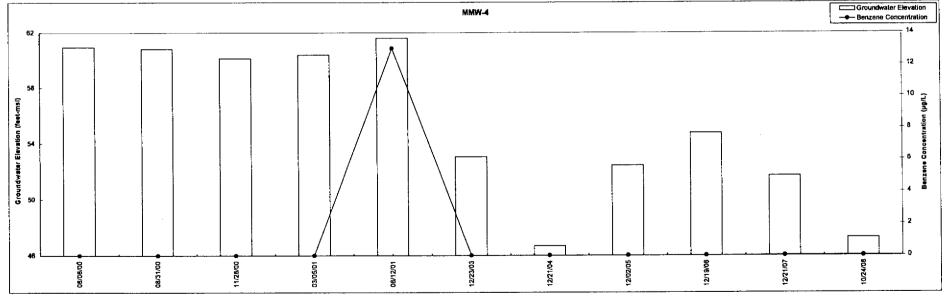

Plates

L:\2008\Cod\98427\Site

Images: Jalk Fee.jpg

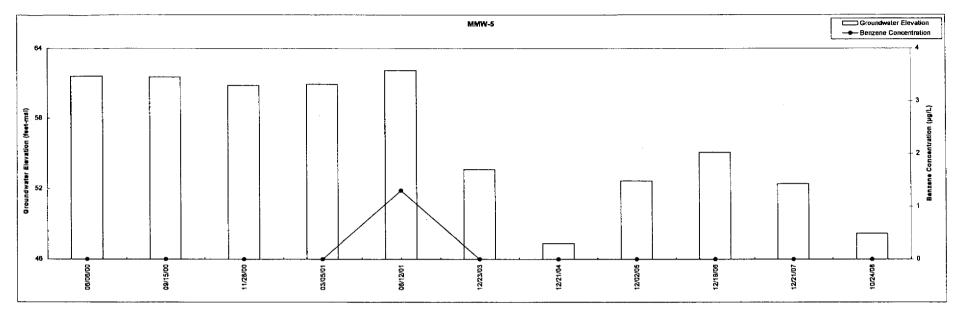
IMAGES: XREFS: ATTACHED | ATTACHED |





Graphs Showing Groundwater Elevations and Benzene Concentrations vs.
Sample Date

Groundwater Elevations and Benzene Concentrations vs. Sample Date Former Jalk Fee Property



Groundwater Elevations and Benzene Concentrations vs. Sample Date Former Jalk Fee Property

Well Purging and Groundwater Sampling Protocol

WELL PURGING AND GROUNDWATER SAMPLING PROTOCOL EXXONMOBIL OIL CORPORATION SITES SOUTHERN CALIFORNIA (EXCLUDING SAN DIEGO COUNTY) AND NORTHWEST

Well Head Inspection and Cleanup

- 1. Inspect well pad for damage and note condition in field log.
- 2. Open well box lid and inspect well box for damage and presence of debris or fluid. Note condition in field log.
- 3. Remove debris and fluids from well box prior to unlocking and removing well cap:

Well Measurements and Liquid-Phase Hydrocarbon Contingencies

- 1. All well measurements will be recorded to 0.01 foot. Depths will be measured from the permanent survey mark on the top of the well casing.
- 2. Using an oil/water interface probe measure depth to first fluid (liquid-phase hydrocarbons or water), depth to water and well total depth. Record all measurements including liquid-phase hydrocarbon thickness (depth to water depth to liquid-phase hydrocarbons).
- 3. Although it is important to periodically determine the condition of groundwater wells by measuring total depth, taking total depth measurements should be avoided if possible on wells that contain liquid-phase hydrocarbons.
- 4. If measurable liquid-phase hydrocarbons are present (≥0.25 foot), remove liquid-phase hydrocarbons to extent possible and do not collect groundwater samples.
- 5. If no liquid-phase hydrocarbons are present or thickness is <0.25 foot, purge and sample well.

Purging Procedures

1. If site is to be sampled by no-purge method, ignore sections on purging procedures and recharge measurements.

2. Calculating purge volumes. Purge volumes are based on well volumes which are the volumes of the well casing.

$$WV = (7.48\pi/4) \times CD^2 \times [WD-GW]$$

Where: WV = Well volume (gallons)

CD = Casing Diameter (feet)
WD = Well Depth (feet)
GW = Depth to Groundwater

- 3. At the start of purging, measure temperature, pH and specific conductance. Additional measurements should be taken after each well volume has been purged. Purging is generally considered complete when temperature, pH and specific conductance stabilize or at least three well volumes have been removed. For slow recharge wells (do not recover to 80% of static depth to water within two hours), purge at least one well volume.
- 4. Use a vacuum truck, hand bailer or submersible pump to purge wells.
- 5. Record purging procedures and water quality measurements.

Recharge Measurements

1. Calculate 80% recharge using the following equation:

Where: 80% Recharge is a depth to water in feet

WD = Well Depth (feet)

GW = Depth to Groundwater (feet)

- 2. For fast recharging wells, collect samples as soon as 80% recharge occurs and within two hours of completion of purging.
- 3. For slow recharging wells, collect samples no more than two hours after completion of purging or when sufficient water is present for sampling.

Sample Collection

- 1. Collect groundwater samples with individually-wrapped, clean, disposable bailers.
- Bailers should be lowered into water slowly to minimize splash and should not be completely submerged (for analysis of volatile organic compounds).

- 3. Transfer water from bailer to appropriate sample containers in a manner that does not cause excessive turbulence, aeration, or head space.
- 4. Seal and label containers, place in sealable, plastic bags and place in a cooler with ice
- 5. Fill out proper chain-of-custody forms as samples are collected.

Blank and Duplicate Samples

- 1. A trip blank consisting of clean water will be provided by the laboratory before sampling activities and will be placed in the cooler with investigative samples and transported to the laboratory for analysis.
- An equipment blank may be prepared by putting clean water through the sampling apparatus used for investigative sample collection. The equipment blank will be placed in the cooler with investigative samples and transported to the laboratory for analysis.
- A field duplicate may be prepared by collecting a separate sample from one well and labeling it as a distinct sample. The field duplicate will be analyzed as an investigative sample.

Well Security and Repairs

- 1. Replace and lock well cap.
- 2. Perform minor maintenance on well head and well box. Do not use petroleum-based products as cleaners or to lubricate locks.
- 3. Replace and secure well cover. Note repairs that are required but could not be done at time of sampling.

Decontamination Procedures

- 1. When taking well measurements or purging, proceed from least to increasing hydrocarbon concentrations when practical. This is a secondary protection against cross-contamination, the primary method to prevent cross-contamination is thorough decontamination.
- 2. All tools that are placed inside wells (interface probe, hand bailers, submersible pumps, and non-disposable sampling equipment) will be washed in a detergent water solution and rinsed prior to use and before placing in the next well. When

measuring well total depths, make sure that measuring tape attached to probe is decontaminated.

- 3. When using a vacuum truck, the following procedures will be followed to minimize possibility of cross-contamination.
 - a. Place clean dedicated stingers into each well before purging.
 - b. Check backflow preventers, start vacuum and connect vacuum hose to dedicated stinger.
 - c. While vacuum is still applied, disconnect hose from stinger.
- 4. When using submersible pumps be sure to decontaminate discharge tubing, control wires and pull ropes.
- 5. When collecting groundwater samples, use personal decontamination and nitrile (or comparable) gloves to minimize possibility of cross-contamination.

Limitations

LIMITATIONS

Kleinfelder performed the services for this project in accordance with the Standard Procurement Agreement with the ExxonMobil Oil Corporation (signed on June 21, 2007) and consistent with professional standard of care defined as that level of services provided by similar professionals under like circumstances. No guarantee or warranty is expressed or implied. There is no investigation that is thorough enough to preclude the presence of materials at the site, which presently, or in future, may be considered hazardous. Because regulatory criteria may change, acceptable concentrations of contaminants present at the time of investigation may in the future become subject to different regulatory standards.

This report may be used only by the client, in accordance with our contract, only for the purposes stated, and within a reasonable time from its issuance. If the intended period for usage is greater than one year from the issuance date, ExxonMobil recognizes that land use, site conditions (both on and off site) or other factors may change over time, and additional work may be required. Any party other than ExxonMobil, or their assignees who wish to use this report, shall notify both ExxonMobil ands Kleinfelder prior to such intended use to obtain written approval from both parties. Based on the intended use of the report, Kleinfelder or ExxonMobil may require that additional work be performed and an updated report be issued. At Kleinfelder's sole discretion, written approval may be withheld pending re-performance or acceptance of a written liability waiver.

Monitoring Well Sampling Forms

(909) 793-2691 • FAX (909) 792-1704

Page 1 of 1

Monitoring Well Sampling Form

Job Name: Ja	lk Fee	Date: lo	124	08
Job Number: -89	911 98427	Employee:	<i>[.</i>	450A
Job Location: 10	0607 Norwalk Boulevard, Santa Fe Sp	rings, California		

Measurements are from top of casing. 'Casing volume: 2" = 0.16 g/ft., 3" = 0.36 g/ft., 4" = 0.65 g/ft., 6" = 1.5 g/ft. Boring volume: 2" = 0.78 g/ft., 4" = 1.51 g/ft.

Well ID: N	/IW04	Diame	eter: 4"	80%	Recovery	(ft.):	DTW wi	nen sampled (f	t.):
Sample T	ime:	340	Water C	olumn	(ft.):	Dissol	ved Oxyge	n:	mg/L
LPH Dept	th (ft.):	J +	Casing '	Volume	e (gal):	Oxyge	n Reductio	n Potential:	mV
Water De	pth (ft.):	84.13	Purge V	olume	(gal):				
Total Dep									
Time	Sample	Volu (gallo		emp (C)	pН	Cond. (mS/cm)	Turbidity (NTU)	Remarks:	
1340			2	25.3	6.13	-297	999.0*	NO PURGE	

Well ID: N	VIVV 05	Diamete	r: 4"	80%	Recovery	(ft.):	DTW wi	nen sampled (fi	t.):
Sample T	ime: 1315) Wa	iter Colu	ımn (ft.):	Dissol	lved Oxyge	n:	mg/L
LPH Dept	Ca	sing Vo	lume	(gal):	Oxyge	Oxygen Reduction Potential:			
Water De	pth (ft.):85	5.(4 Pu	rge Volu	ıme (gal):				
Total Dep	th (ft.): 106	5.35							
Time	Sample	Volume (gallons)	Ter (C	'	рН	Cond. (mS/cm)	Turbidity (NTU)	Remarks:	
1385			25	.7	6.21	134	949.0*	NO PURGE	

* EQUIPMENT MALFUNCTION

Exhibit 11 Analytical Laboratory Data Sheets

alscience nvironmental aboratories, Inc.

October 31, 2008

Jeff Hensel Kleinfelder, Inc. 1220 Research Drive, Suite B Redlands, CA 92374-4563

Subject: Calscience Work Order No.: 08-10-2236

> Client Reference: ExxonMobil JALK FEE 89911

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/24/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

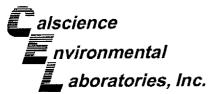
If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & se Saia

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

CA-ELAP ID: 1230


NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

CASE NARRATIVE

Calscience Work Order No.: 08-10-2236
Client Reference: ExxonMobil JALK FEE 89911

Sample MW05 was analyzed by 8260B VOCs + Oxygenates using a vial that contained headspace bubble greater than $\frac{1}{4}$ inch in diameter.

Analytical Report

Kleinfelder, Inc.

1220 Research Drive, Suite B Redlands, CA 92374-4563

Date Received:

10/24/08

Work Order No:

08-10-2236

Preparation:

EPA 5030B

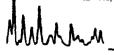
Method:

EPA 8260B ug/L

Units:

ug/L

Project: ExxonMobil JALK FEE 89911


Page 1 of 3

Client Sample Number			Lab Samp Number		Date/Time Collected	Matrix	Instrument	Date Prepare	Date/Time d Analyzed	~~~	Batch ID
MW05			08-10-223	36-1 - A	10/24/08 13:15	Aqueous	GC/MS Q	10/28/08	10/29/08 03:48	081	028L02
Comment(s): -Results were	e evaluated to th	ne MDL, con	centrations	>= to the	MDL but < R	L, if found, are	qualified wi	th a "J" flag.			
Parameter Parameter	Result	RL	MDL	DF Qual	<u>Parameter</u>			Result	<u>RL</u>	MDL	DF Qua
Acetone	ND	250	46	5	1,1-Dichlo	ropropene		ND	5.0	1.3	5
Benzene	ND	2.5	1.4	5		loropropene		ND	2.5	1.4	5
Bromobenzene	ND	5.0	1.7	5	t-1,3-Dichl	oropropene		ND	2.5	1.8	5
Bromochloromethane	ND	5.0	3.5	5	Ethylbenze	ene		ND	5.0	1.1	5
Bromodichloromethane	ND	5.0	1.7	5	2-Hexanor	ie .		NĎ	50	34	5
Bromoform	ND	5.0	2.8	5	Isopropytb	enzene		ND	5.0	1.1	5
Bromomethane	ND	50	21	5	p-Isopropy	ttoluene		ND	5.0	1.3	5
2-Butanone	ND	50	35	5	Methylene	Chloride		ND	50	13	5
n-Butylbenzene	ND	5.0	1.4	5	4-Methyl-2	-Pentanone		ND	50	22	5
sec-Butylbenzene	ND	5.0	1.0	5	Naphthale	ne .		ND	50	13	5
tert-Butylbenzene	ND	5.0	1.4	5	n-Propylbe	nzene		ND	5.0	4.0	5
Carbon Disulfide	ND	50	9.6	5	Styrene			ND	5.0	1.5	5
Carbon Tetrachloride	ND	2.5	2.1	5	1,1,1,2-Te	trachloroethar	e	ND	5.0	1.8	5
Chlorobenzene	ND	5.0	1.1	5	1,1,2,2-Te	trachioroethar	ie	ND	5.0	2.2	5
Chloroethane	ND	25	6.4	5	Tetrachlori	oethene		510	5.0	2.6	5
Chloroform	1.8	5.0	1.7	5 J	Toluene			ND	5.0	1.6	5
Chloromethane	ND	50	2.4	5	1,2,3-Trich	lorobenzene		3.0	5.0	1.5	5 J.E
2-Chlorotoluene	ND	5.0	2.8	5	1,2,4-Trich	lorobenzene		ND	5.0	2.4	5
4-Chlorotoluene	ND	5.0	1.1	5	1,1,1-Trich	loroethane		ND	5.0	2.2	5
Dibromochloromethane	ND	5.0	2.4	5	1,1,2-Trich	loro-1,2,2-Trit	luoroethane	15	50	3.2	5,
1,2-Dibromo-3-Chloropropane	ND	25	16	5	1,1,2-Trich	• •		ND	5.0	2.7	5
1,2-Dibromoethane	ND	5.0	2.3	5	Trichloroet	hene		100	5.0	1.5	5
Dibromomethane	ND	5.0	2.9	5	Trichloroflu	oromethane		6.6	50	1.6	5 .
1,2-Dichlorobenzene	ND	5.0	1.4	5	1,2,3-Trich	loropropane		ND	25	6.7	5
1,3-Dichlorobenzene	ND	5.0	1.4	5		ethylbenzene		ND	5.0	1.2	5
1,4-Dichlorobenzene	1.2	5.0	1.1	5 j	· ·	ethylbenzene		ND	5.0	1.2	5
Dichlorodifluoromethane	ND	5.0	2.5	5	Vinyl Aceta	-		ND	50	35	5
1,1-Dichloroethane	29	5.0	1.9	5	Vinyl Chlor	ide		ND	2.5	1.6	5
1,2-Dichloroethane	5.4	2.5	1.6	5	Xvienes (to			ND	5.0	2.3	5
1,1-Dichloroethene	130	5.0	2.0	5	Methyl-t-Bu	ityl Ether (MT	BE)	ND	5.0	1.5	5
-1,2-Dichloroethene	96	5.0	2.4	5	•	Alcohol (TBA)	,	ND	50	18	5
-1,2-Dichloroethene	3.1	5.0	2.0	5 J	•	Ether (DIPE)		ND	10	1.5	5
,2-Dichloropropane	ND	5.0	1.9	5		d Ether (ETBI		ND	10	1.3	5
1,3-Dichloropropane	ND	5.0	1.9	5		Methyl Ether (•	ND	10	1.4	5
2,2-Dichloropropane	ND	5.0	2.3	5	Ethanol		···,	ND	500	220	5
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		j		Limits		Qual
Dibromofluoromethane	109	82-130			1,2-Dichlor	oethane-d4		107	75-141		
Foluene-d8	100	83-113			1,4-Bromof	luorobenzene		91	70-118		

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Analytical Report

Lab Sample

Kleinfelder, Inc.

1220 Research Drive, Suite B

Redlands, CA 92374-4563

Date Received:

10/24/08

Work Order No:

08-10-2236

Preparation:

EPA 5030B

Method:

EPA 8260B

Units:

Date/Time

ug/L

Project: ExxonMobil JALK FEE 89911

Page 2 of 3

Date/Time

Date


Client Sample Number			Lab Sam Numbe	•	Date/Time Collected Matrix In	Da Istrument Prepa		\sim	Batch ID
MW04		i.	08-10-22	36-2-A	10/24/08 Aqueous G 13:40	C/MS Q 10/28	/08 10/29/08 04:20	081	028L02
Comment(s): -Results were	evaluated to the	MDL, cond	centration	s >= to the I	MDL but < RL, if found, are qu	ualified with a "J" fla	ıg.		
<u>Parameter</u>	Result	RL	MDL	DF Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Acetone	ND	50	9.1	1	1,1-Dichloropropene	ND	1.0	0.26	1
Benzene	ND	0.50	0.28	1	c-1,3-Dichloropropene	ND	0.50	0.28	1
Bromobenzene	ND	1.0	0.33	1	t-1,3-Dichloropropene	ND	0.50	0.36	1
Bromochloromethane	NĎ	1.0	0.69	1	Ethylbenzene	ND	1.0	0.22	1
Bromodichloromethane	ND	1.0	0.33	1	2-Hexanone	ND	10	6.9	1
Bromoform	ND	1.0	0.55	1	Isopropylbenzene	ND	1.0	0.23	1
Bromomethane	ND	10	4.3	1	p-Isopropyttoluene	ND	1.0	0.26	1
2-Butanone	ND	10	6.9	1	Methylene Chloride	ND	10	2.6	1
n-Butylbenzene	ND	1.0	0.28	1	4-Methyl-2-Pentanone	ND	10	4.4	1
sec-Butylbenzene	ND	1.0	0.20	1	Naphthalene	ND	10	2.5	1
tert-Butylbenzene	ND	1.0	0.28	1	n-Propylbenzene	ND	1.0	0.79	1
Carbon Disulfide	ND	10	1.9	1	Styrene	ND	1.0	0.30	1
Carbon Tetrachloride	ND	0.50	0.43	1	1,1,1,2-Tetrachloroethane	ND	1.0	0.35	1
Chlorobenzene	ND	1.0	0.22	1	1.1.2.2-Tetrachloroethane	ND	1.0	0.44	1
Chloroethane	ND	5.0	1.3	1	Tetrachloroethene	26	1.0	0.51	1
Chloroform	1.3	1.0	0.33	1	Toluene	ND	1.0	0.33	1
Chloromethane	ND	10	0.49	1	1,2,3-Trichlorobenzene	0.36	1.0	0.31	1 J.B
2-Chlorotoluene	ND	1.0	0.55	1	1,2,4-Trichlorobenzene	ND	1.0	0.49	1
4-Chlorotoluene	ND	1.0	0.21	1	1,1,1-Trichloroethane	ND	1.0	0.45	1
Dibromochloromethane	ND	1.0	0.48	1	1,1,2-Trichloro-1,2,2-Trifluo		10	0.64	1 J
1,2-Dibromo-3-Chloropropane	ND	5.0	3.1	1	1,1,2-Trichloroethane	ND	1.0	0.54	1
1,2-Dibromoethane	ND	1.0	0.47	1	Trichloroethene	27	1.0	0.30	1
Dibromomethane	ND	1.0	0.59	1	Trichlorofluoromethane	0.82	10	0.31	1 J
1,2-Dichlorobenzene	ND	1.0	0.27	1	1,2,3-Trichloropropane	ND	5.0	1.3	1
1.3-Dichlorobenzene	ND	1.0	0.28	1	1,2,4-Trimethylbenzene	ND	1.0	0.24	1
1.4-Dichlorobenzene	0.25	1.0	0.21	1 J	1,3,5-Trimethylbenzene	ND	1.0	0.23	1
Dichlorodifluoromethane	ND	1.0	0.49	1	Vinyl Acetate	ND	10	7.1	1
1,1-Dichloroethane	4.5	1.0	0.37	1	Vinyl Chloride	ND	0.50	0.33	1
1,2-Dichloroethane	0.53	0.50	0.31	1	Xylenes (total)	ND	1.0	0.45	1
1,1-Dichloroethene	45	1.0	0.40	1	Methyl-t-Butyl Ether (MTBE		1.0	0.30	1
c-1.2-Dichloroethene	5.8	1.0	0.49	1	Tert-Butyl Alcohol (TBA)	, ND	10	3.5	1
l-1,2-Dichloroethene	ND	1.0	0.40	1	Diisopropyl Ether (DIPE)	ND	2.0	0.31	1
1,2-Dichloropropane	4.1	1.0	0.38	1	Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.27	1
1,3-Dichloropropane	ND	1.0	0.38	1	Tert-Amyl-Methyl Ether (TA	· · · -	2.0	0.28	1
2,2-Dichloropropane	ND	1.0	0.46	1	Ethanoi	ND	100	43	1
Surrogates:	REC (%)	Control Limits	5.75	Qual	Surrogates:	REC (%)	Limits	,,,	Qual
Dibromofluoromethane	110	82-130			1,2-Dichloroethane-d4	106	75-141		
Toluene-d8	100	83-113			1,4-Bromofluorobenzene	88	70-118		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Analytical Report

Kleinfelder, Inc.

1220 Research Drive, Suite B

Redlands, CA 92374-4563

Date Received:

10/24/08 08-10-2236

Work Order No:

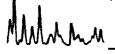
Preparation:

Method:

Units:

EPA 5030B EPA 8260B

ug/L


Project: ExxonMobil JALK FEE 89911

Page 3 of 3

Client Sample Number			Lab Sam Numbe	•	Date/Time Collected	Matrix	Instrument	Date Prepare		QC	Batch ID
Method Blank			099-10-0	06-27,296	N/A	Aqueous	GC/MS Q	10/28/0	8 10/29/08 01:06	081	028L02
Comment(s): -Results were	evaluated to th	e MDL, cond	entration	s >= to the I	MDL but < RL	, if found, are	qualified wit	th a "J" flag	•		
<u>Parameter</u>	Result	RL	MDL	DF Qual	<u>Parameter</u>			Result	RL	MDL	DE Qual
Acetone	ND	50	9.1	1	1,1-Dichlor	opropene		ND	1.0	0.26	1
Benzene	ND	0.50	0.28	1	c-1,3-Dichl	oropropene		ND	0.50	0.28	1
Bromobenzene	ND	1.0	0.33	1	t-1,3-Dichk	propropene		ND	0.50	0.36	1
Bromochloromethane	ND	1.0	0.69	1	Ethylbenze	ne		ND	1.0	0.22	1
Bromodichloromethane	ND	1.0	0.33	1	2-Hexanon	e		ND	20	6.9	1
Bromoform	ND	1.0	0.55	1	Isopropyibe	enzene		ND	1.0	0.23	1
Bromomethane	ND	10	4.3	1	p-Isopropyl	toluene		ND	1.0	0.26	1
2-Butanone	ND	10	6.9	1	Methylene	Chloride		ND	10	2.6	1
n-Butylbenzene	ND	1.0	0.28	1	4-Methyl-2-	Pentanone		ND	10	4.4	1
sec-Butylbenzene	ND	1.0	0.20	1	Naphthaler	ie		ND	10	2.5	1
tert-Butylbenzene	ND	1.0	0.28	1	n-Propylbe	nzene		ND	2.0	0.79	1
Carbon Disulfide	ND	10	1.9	1	Styrene			ND	1.0	0.30	1
Carbon Tetrachloride	ND	0.50	0.43	1	1,1,1,2-Tet	rachioroethar	ie	ND	1.0	0.35	1
Chlorobenzene	ND	1.0	0.22	1	1,1,2,2-Tet	rachloroethar	e	ND	1.0	0.44	1
Chloroethane	ND	5.0	1.3	1	Tetrachlord	ethene		ND	1.0	0.51	1
Chloroform	ND	1.0	0.33	1	Toluene			ND	1.0	0.33	1
Chloromethane	ND	10	0.49	1	1,2,3-Trich	lorobenzene		0.61	1.0	0.31	1 J
2-Chlorotoluene	ND	1.0	0.55	1	1,2,4-Trich	lorobenzene		0.53	1.0	0.49	1 J
4-Chlorotoluene	ND	1.0	0.21	1	1,1,1-Trich	loroethane		ND	1.0	0.45	1
Dibromochloromethane	ND	1.0	0.48	1	1,1,2-Trich	loro-1,2,2-Tri	luoroethane	ND	10	0.64	1
1,2-Dibromo-3-Chloropropane	ND	10	3.1	1	1,1,2-Trich	loroethane		ND	1.0	0.54	1
1,2-Dibromoethane	ND	1.0	0.47	1	Trichloroet	nene		ND	1.0	0.30	1
Dibromomethane	ND	1.0	0.59	1	Trichloroflu	oromethane		ND	10	0.31	1
1,2-Dichlorobenzene	ND	1.0	0.27	1	1,2,3-Trich	loropropane		ND	5.0	1.3	1
1,3-Dichlorobenzene	ND	1.0	0.28	1	1,2,4-Trime	thylbenzene		ND	1.0	0.24	1
1,4-Dichlorobenzene	ND	1.0	0.21	1	1,3,5-Trime	thylbenzene		ND	1.0	0.23	.1
Dichlorodifluoromethane	ND	1.0	0.49	1	Vinyl Aceta	te		ND	20	7.1	1
1,1-Dichloroethane	ND	1.0	0.37	1	Vinyl Chlori	de		ND	0.50	0.33	1
1,2-Dichloroethane	ND	0.50	0.31	1	Xylenes (to	tal)		ND	1.0	0.45	1
1,1-Dichloroethene	ND	1.0	0.40	1	Methyl-t-Bu	tyl Ether (MT	BE)	ND	1.0	0.30	1
c-1,2-Dichloroethene	ND	1.0	0.49	1	Tert-Butyl A	Ncohol (TBA)		ND	10	3.5	1
t-1,2-Dichloroethene	ND	1.0	0.40	1	Diisopropyl	Ether (DIPE)	ı	ND	2.0	0.31	1
1,2-Dichloropropane	ND	1.0	0.38	1		l Ether (ETB		ND	2.0	0.27	1
1,3-Dichloropropane	ND	1.0	0.38	1	Tert-Amyl-I	vethyl Ether (TAME)	ND	2.0	0.28	1
2,2-Dichloropropane	ND	1.0	0.46	1	Ethanol		•	ND	100	43	1
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:]	REC (%)	<u>l Limits</u>		<u>Qual</u>
Dibromofluoromethane	110	82-130			1,2-Dichlor	oethane-d4		107	75-141		
Toluene-d8	101	83-113			1,4-Bromof	luorobenzene	!	88	70-118		

RL - Reporting Limit ,

DF - Dilution Factor ,

Quality Control - Spike/Spike Duplicate

Kleinfelder, Inc.

1220 Research Drive, Suite B Redlands, CA 92374-4563 Date Received:

Work Order No: Preparation:

Method:

10/24/08

08-10-2236 EPA 5030B

EPA 8260B

Project ExxonMobil JALK FEE 89911

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d	Date Analyzed	MS/MSD Batch Number
08-10-2350-1	Aqueou	s GC/MSQ	10/28/08		10/29/08	081028S02
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD Ç <u>L</u>	Qualifiers
Benzene	90	98	88-118	8	0-7	4
Carbon Tetrachloride	81	90	67-145	11	0-11	
Chlorobenzene	94	101	88-118	8	0-7	4
1,2-Dibromoethane	99	104	70-130	5	0-30	
1,2-Dichlorobenzene	91	100	86-116	9	0-8	4
1,1-Dichloroethene	87	98	70-130	11	0-25	
Ethylbenzene	94	102	70-130	8	0-30	
Toluene	89	95	87-123	7	0-8	
Trichloroethene	87	97	79-127	11	0-10	4
Vinyl Chloride	76	85	69-129	11	0-13	
Methyl-t-Butyl Ether (MTBE)	94	101	71-131	7	0-13	
Tert-Butyl Alcohol (TBA)	88	97	36-168	10	0-45	
Diisopropyl Ether (DIPE)	89	91	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	98	104	72-126	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	105	110	72-126	5	0-12	
Ethanol	86	90	53-149	4	0-31	

RPD - Relative Percent Difference ,

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Kleinfelder, Inc.

1220 Research Drive, Suite B Redlands, CA 92374-4563

Date Received:

N/A 08-10-2236

Work Order No:

Preparation:

EPA 5030B

Method:

EPA 8260B

Project: ExxonMobil JALK FEE 89911

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Numbe	
099-10-006-27,296	Aqueous	GC/MS Q	10/28/08	10/28	/08	081028L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	99	100	84-120	78-126	1	0-8	
Carbon Tetrachloride	91	95	63-147	49-161	3	0-10	
Chlorobenzene	103	104	89-119	84-124	1	0-7	
1,2-Dibromoethane	103	105	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	99	100	89-119	84-124	1	0-9	
1,1-Dichloroethene	101	103	77-125	69-133	2	0-16	
Ethylbenzene	107	107	80-120	73-127	0	0-20	
Toluene	98	98	83-125	76-132	0	0-9	
Trichloroethene	104	107	89-119	84-124	3	0-8	
Vinyl Chloride	90	95	63-135	51-147	5	0-13	
Methyl-t-Butyl Ether (MTBE)	96	98	82-118	76-124	2	0-13	
Tert-Butyl Alcohol (TBA)	95	97	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	90	91	81-123	74-130	1	D-11	
Ethyl-t-Butyl Ether (ETBE)	98	99	74-122	66-130	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	106	107	76-124	68-132	0	0-10	
Ethanol	90	88	60-138	47-151	2	0-32	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result : Pass

RPD - Relative Percent Difference,

CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 08-10-2236

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Calscience Environmental Laboratories, Inc.

CHAIN	OF	C	US	TC	DY	REC	ORD
	LA		21	1/	1.51	•	

E	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA	92841-1427	ີ່ 5063 Com	ervice Cente imercial Cir CA 94520-8	cle, Suit	e H							Da	ite	10	0 /	24	105	<u>~</u>			-
4	(714) 895-5494	32041-1421	(925) 689	·9022	3377								Pa	ge			of	f	↓			_
LABOR	ATORY CLIENT:	Calder					CLIE	NT PR	OJECT	_						P.O. N	10.:	-				
ADDRE	iss:	TTETUCA	<u> </u>				<u> </u>	Já		Fee		89	911									
	1270 Re	seaxchor.	Suite	<u>B</u>			PRO	JÉC1 (ONTAC							LABU	USE ON		การ	១៩	2 9 F	/ 1
CITY	Redlands	STA	JUIR TEA		ZIF	Р		<u> </u>	++		<u>ens</u>	<u> </u>				Ш	لتتب	- 2		칼 [3 4	
TEL:	/ _ \ E.W	MIL:	<u>. V.'</u>						5): (PRII		_		ELTLO		1		LER RE	ECEIP	ī			1
TUDNA	(909) 793-269 \ E-N	<u> </u>					يال ا	SON	\mathcal{W}'_{l}				&E			TEM					°(
		8 HR 🔲 72 HR	☐ 5 DAYS	10 10 0	DAYS		İ				REC	UE	STE	D AI	NAL	_YS	ES					
	AL REQUIREMENTS (ADDITIONAL CO	OSTS MAY APPLY)			-					T												
	QCB REPORTING FORMS	COELT EDF		····		 -		. 1								İ						
SPECI	ALINSTRUCTIONS:						VOC		İ								. [
								_				Ì	ŀ				.					
							>3	-									i l					
							点							-								
LAB			SAMPI	INC		NO.	4-2-1							١.			, [1	- 1	
USE	SAMPLE ID	FIELD POINT NAME (FOR COELT EDF)	DATE	TIME	MATRIX		मिन्	1								İ						
1		MW 05	10/24/00	1315	GW	3	X	_		_				+					+	1	\neg	
2		MW 04	10/24/08	1340	60	3	M				1 1		_	1-						十	+	
		10/W 07	10/24/01	1240	50			_			+-+	-+	+	+	-	\dashv			\dashv	\dashv	\dashv	
+						-				-	+			-		-	\vdash	}	\dashv	\dashv	-	
				-	<u> </u>	ļ		\dashv	<u> </u>		+			 			 		\dashv	\dashv	-	
																		_			\bot	
						<u> </u>																
	· · ·																					
						 			\dashv	+	1	-	\dashv	1					\dashv	-		_
10, 1					 		+-	\dashv	-	+-		-+			\vdash		\vdash		\dashv		\dashv	
					ļ					_	$\perp \perp$	_							\rightarrow	\dashv		;
		<u>/</u>	<u> </u>																			
	uished by: (Signature)			Recei	ved by	(Signal	ure/Af	filiation	W/	1	//>		19	Z	Date 10/2	4/	093		Time /	1 / Z		
Relinqu	uished by: (Signature)			Rece	sed by:	(Signat	turé/Af	iliatio	1)						Date				Time	<u>, </u>		
Relinqu	uished by: (Signature)		······································	Recei	ived by:	(Signat	ure/Af	filiatio	1)						Date				Time	 -		;

Lalscience Environmental **L**aboratories, inc.

WORK ORDER #: **08**- 1 0 - 2 3 6

SAMPLE RECEIPT FORM Cooler _/_ of _/_

CLIENT: Kleinfelder		DA	TE: <u>[0]</u>	<u>24108</u>
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C				
Temperature 2.6 °C + 1.8 °C	CF = 4.4	_°C □Blank	k ⊡ Sam _l	ple
☐ Sample(s) outside temperature criteria (P	M/APM contacted by:).		
Sample(s) outside temperature criteria bu	ut received on ice/chilled (on same day of sa	mpling.	
☐ Received at ambient temperature, pla	iced on ice for transpe	ort by Courier.	-	4
Ambient Temperature: □Air □Filte	er			Initial
CUSTODY SEALS INTACT:		_		
□ Cooler □ □ No	(Not Intact)	Not Present		Initial:
☐ Sample ☐ ☐ No	(Not Intact)	Not Present		Initial: b.L
SAMPLE CONDITION:				
W. S		Yes rb∕	No \Box	N/A
Chain-Of-Custody document(s) received w		1.0		
Sampler's name indicated on COC		_		
Sample container label(s) consistent with C	юс			
Sample container(s) intact and good condit	.ion	🗗		
Correct containers and volume for analyses	s requested	🗗		
Proper preservation noted on sample label	(s)	. Ė		
Volatile analysis container(s) free of heads	pace	. 🗆	b	
Tedlar bag(s) free of condensation		. 🗆		生
CONTAINER TYPE:			•	
Solid: □4ozCGJ □8ozCGJ □16ozCG	J □Sleeve □EnCor	res® □TerraCo	ores® 🖂_	
Water: □VOA 🕍VOAh □VOAna₂ .	□125AGB □125AGF	Bh □125AGBp	o₄ □1AGB	3 □1AGBna₂
□1AGBs □500AGB □500AGBs □25	50CGB □250CGBs	□1PB □500P	B □500PB	Bna □250PB
□250PBn □125PB □125PBznna □1	ı00PBsterile □100PF	Bna₂ □		
Air: □Tedlar® □Summa® □		Cł	necked/Labei	10.4.4
Container: C:Clear A:Amber P:Poly/Plastic G:Glas		znna:7nΔc-+NaOH	Review Scann	red by: RN

Calscience
Environmental
Laboratories, inc.

WORK ORDER #: **08**- 1 0 - 2 2 3 6

SAMPLE ANOMALY FORM

nts:		
Sample #	Container ID(s)	Vials Received
· .	#	- ,